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ABSTRACT

ey

A a e tetn s L

N Exact solutions are found to the linearized three dimensional equations

for free surface gravity waves trapped against a straight coastline with a

variable (perpendicular to the coastline) tepography. Three families of
topographies are found, one concave upwards and two convex upwards, which will
support these edge waves as separable solutions to the original equations.

For a given topography, specified by an initial slope, h;, a typical water
depth, hx, and a typical offshore disttzte: Xy solutfr:ifare given in terms of

the nondimensional parameters, h; xﬁ/hM; and h;igiThe first parameter is a

N
Ju ¥
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measure of how the initial slope h; compares to that for a straight

topography from the origin to (xH’hM)' i.e;,ﬂhg7;u). This parameter characterizes

NI I Ry

the fanilies in ranges 0 < h} xH/hH <1/2, 1/2 <} xH/hH <1l and

g,

1« hé xu/hq‘i‘(tﬁ 15)/0.9. (This latter constant bound is a function of the

definitisn of offshore scale &nd can be modified to other values,)

P P ArIaCT T

)
~~» The nondimensional frequency, period, vertical wave number, offshore decay muze‘”\1
-
and topography can be expressed in terms cf the single parameter h; xH/hH;
r-] -
the velocities, wave height and alongshore wave number depend on both parameters.
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INTRODUCTION

The trapping of wave energy along coastlines has been of theoretical

A 4

interest since the original edge wave solution of Stokes (1846).

BB AL AN L gt s

Recently, there has been consideration of the physical reality of such trapped

waves and a number of observations have led to a belief that such trapped waves

oot e At}

may indeed play a role in beach erosion, local resonances, anisostatic response

i

}5 3 to traveling pressure disturbances, etc,; a review of these pcints is contained

in LeBlond and Mysak (1977) and (1978). Some distinction must be made at the

outset of any research as to the type of trapped waves to be discussed.

Here the emphasis 1s on c¢lass I waves, i.e. gravity dominated, of frequencies

high enough that Corlolis effects may be neglected, i.e¢, edge waves,

These waves are basically high frequency, dispersive and can travel in éither
direction along a coastline; in fact, since no rotational effects are included
and thus no direction is preferred, the coast line may be oriented in any
direction.

The problem at hand then is to examine the existence of edge waves

g
3
%%7
traveling along and trapped against a straight coastline bounding a semi-infinite %
ocean whose depth contours are parallel to the coastline. The ocean is %
considered to be a perfect homogencous fluid, inviscid and irrotational; %
The purpose of the paper is to establish exact solutions for these three %
dinmensional equations by reversing the usual question 'what are the trapped %
solutions for a given topography" to read "what topographies will aupport trapped g
wave solutions'. One solution already available for comparison is that of %
Stokes (1846) who considered a linear topography (constant slope) aad obtained a %

Yzeroth" mode solution which Ursell (1952) extended to a number of discr@te modes

plus a continuous spectrum, This was baséd on the previous work of Eckart (1951)

who obtained higher modes using a shallow water (2D) approximation.
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Other authors [e.g. Reid (1958)] added Coriolis effects to the shallow water
theory. In fact, the bulk of the effort in this area has relied on the shallow
water assumption [e.g. see p. 460 LeBlond and Mysak (1977)] and the lack of
other exact three dimensional edge wave solutions was commented upon by
Grimshaw (1974) who examined upper and lower bounds on such dispersion relation-
ships. Some non-linear topographies have been considered. Rob?naon (1964)
examnined class II, i.e. quasi-geostrophic low frequency, waves on a linear
sloping shelf of finite width terminated by a discontinuous drop to a constant
depth infinite ocean. BHall (1966) used an exponential depth profile with
solutions in the form of hypergeometric or Jacobi polynomials to examine both
edge and continental shelf waves, i.e. both class I and class II waves.
Mysak (1968) also discussed both classes, using Robinson's depth profile, where
the solution is given in terms of Laguerre polynomials. Hidaka (1976-&)‘
examined seiching due to a submarine bank described by a parabolic depth
variation in terms of Mathieu functions. This is a trapped but not specifically
an "edge" wave, but it is of class I nevertheless. In a related paper
(Hidaka (1976~b)) he examined shelf resonances when the apex of th; parabola
reaches the free surface. Murty (1977) gives a general review of tsunami
theory and current research, which includes theoretical and observational
studies on edge waves caused by tsunamis (which are generally of high enough
frequency that Coriolis effects may be neglected, i.e. class 1 waves) but are
long enocugh that a two dimensional shallow water theory suffices.

Experiments performed by Ursell (1952) indicated the reality of such edge
waves; further experiments by Galvin (1965) indicated that these could be.
excited (nonlinearly) by normally incident waves. Huntley ani Bowen (1973) and

Huntley (1976) have made observations which indicate the presence of edge waves

.\:.)‘«K‘ Bt w At A g ot e

Vs

e n B A

i FhE A5 e, P

L Geama A Y e Ve

ro4 . s - s
tah T, i (L, I 3




{31

along coastlines in the U.K. while Nakamura (1962), Hatori and Takahasi z1964),

Nakamura snd Watanabe (1966), Aida (1967), Hatori (1967) and othérs have

degceribed the excitation of such edge waves by tsunamis incident onto the coast

of Japan. There is other observational evidence, Wilson and Torum (1968), that

some tsunami energy 1is trapped on the continental shelf in the generating region

at least for the 1964 Alaskan Earthquake and it may be expected that some of

this energy could be converted to and travel along the coastline as edge waves.

Olsen and Hwang (1974) indizate that edge waves may play a significant role in

near shore tsunami behavior.
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FORMULATION

The governing equations are well known, e.g. Lamb (1932) and are written
here for a straight coastline, x = 0, -= < y < 4=, bounding a semi-infinite
ocean, x > 0 with a free surface at z = 0 and a bottom topography, z = ~h(x)
with z positive upward:

(1) 928(x,y,2,t) = 03 x>0, -h <2< 0, =<y <®

(2) o029 -gadlaz=m0; x>0, z=0, ~w<y<w

(3) 93¢/9z = -(dh/dx) 3¢/ax; x>0, z=<h, ~w<y< =
where a time harmonic behavior, exp(-igt) has been assumed for the velocity
potential, ¢, The Coriolis effect has been neglected and the y dependence will
be taken as periodic (the edge wave assumption). Assuming separation of
variables, the velocity potential is given as ¢ = X(x) 2(z) cos (ky-ot), using
a real form for the » and ¢ dependence, leading to:

o

(4) X(x) = A exp (~2x) + B exp (+&x)

s e AR St e e e i i o

(5a) Z2(z) = C sinh (nz) + D cosh (nz)

¢

(5b) = C' sin (mz) + D' cos (mz)

R

where 22 is a separation constant and n? = k2 - 22 5 0 and m2 = 22 « k2 > 0
provide two different solution forms for 2(z). The coefficient B is taken to

be zero to provide a ":rapped” solution and A may be absorbed into 2(z).

i

Substituting .the first solution, (5a), into the boundary conditions provides

(6) C/D = 02/gn

tanh (nh) - o?/gn
(1) dn/dx = ~(a/2) 17200 /gn) tanh(nh))

(a) = -(n/z)canh[nh-tanh-l(ozlsn)]: o2/gn < 1

v
Pt

(b) = -(n/%)coth[nh - coth"l(ozlgn)]; 02/gn
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8) <¢'/p' = o?/gm

(9) dh/dx = (n/2)tan{mh +’tan_l(czlgm)]

Wt A S s Sra g S

‘ é o
Using the boundary conditions in (5b) leads to
[ ¥
E.

Equations (7) and (9) can be integrated to give three families of topographies

i Ry o e o Wb 5 X

that give trapped solutions as summarized below:

Case I: k2 > 22; od/gn <1

-
Case II: k%> 22; o2/gn> 1 E
£
Case III: k2 < 22; all o2/gm 7
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SPECIFIC SOLUTIONS

Case I leads to a concave upward topography with h(0)} set equal to zero
(to prevent flux across the coastline), an asymptotic constant depth,
h, = [tanh-l(ozlgn)]/n and an initial slope, h; z (dh/dx)o = g2/gt.
Using 0 = tanh-l(azlgn).

h(x) = [0 - sinh 2 (stah 0 exp[-n2x/2]))/n
with a velocity potential given as

4 =D exp (-2x) cos (ky~ot)cosh{n(z+h )}/cosh(nh )

Case II (k% > £2, 02/gn > 1, i.e, eq. 7b) leads to a convex upward topography with
an infinite slope at a finite value of h and x. Using ©6' = coch-l(ozlgn),

h(x) = (8'-cosh-l(cosh 8'eexp(-n2x/2))1/n
The maximum extent of the topography is Xy " (2/n?)snfcosh 0'] which occurs at
hH = 8'/n. The velocitv potential in this case i{s, for x < X0

é¢=D exp(—ix)cos(ky—ot)sinh[n(z+hn)]/sinh(nhx)

When ozlgn = 1, both cases I and 11 recover the Stokes solution, with
h=xtana, $=~kcosa, n=*-ksgina and a= tan-l(h;).

Case IIT (k% < 22, all o2/gm; i.e. eq. 9) using y = tan L %; leads again
again to a convex upward topography with an infinite slope at Xy~ ~(%/m?)2n[siny]
vith depth h, = (3/2 - Y)/m

5(x) = [sin " (sin v + expl+m2x/t])-y]/m
with a velocity potential for x < Xy given by

4= D' exp(~£x)cos(ky-cc)sin[m(hn+z)]/sin(mhn)

These last two families of solutions both appear to be physically
unrealistic in that the prescribed bottom topography does not extend past a finite
distance and finite depth before "doubling back." If, however, the resulting
velocity fields for these problems have decayed sufficiently with distance from

the straight coastline through the term exp(-ix) and/or if they have decayed

*
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sufficiently with depth to have both u and w negligible at the lower boundary
before these "turning points' are reached, the point is moot si;ce the lower ‘
boundary condition, eq. (3), is essentially satisfied identically for all x and
z past these turning points. Thus these solutions may provide a basis for
realistic trapped waves on a topography which matches that prescribed by these
solutions prior to the turning points and a flat (or any other) topography past
them.

The rest of this report will examine the implications of these Bolu:ions,
particularly for the various limiting cases. To do so conveniently, it isluseful

to nondimensionalize the parameters and variables used, The coordinates x, y

and z are nondimensionalized with respect to hu(hm = hM for case I) as are the

parameters k, £ and n (@ will be counted with n génerically),

i.e. (X,7,Z) = (x,y,z)/hM and (E,E,;) = (k,%,n) (hM) as the case requires.
The frequency is scaled to o, = (g/h)l/2 as is the time, i.e. @ = o/ao and
tPmt o o, Velocities, ¢ = ¥4, are scaled by u = u{x=0, y=0, z=0, t=0) and
the wavz: height, £ = —(1/3)%%{z - 0),by £, = £(x=0, y=u/2k, z=0, t=0) which

equals (a/gi)uo.
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SOLUTIONS AND LIMITING CASES

&

A B Rt nebeina s il

The above solutions are defined by three dimensional parameters or .two

nondimensional parameters, using hH as a typical length scale. The choice of

those parameters to be prescribed is important since it eatablishes how simply the

results may be described. One such nondimensional "fundamental" parameter will

‘;i&

0

Sapns

be chosen as the initial slope, h;. The sccond choice depends on which aspect

of the problem is under study. For examination of various "asymptotic solutions,"

ey

3

3 ~,§;‘

the parameter 32/f (or 8, 8' or y ) arises naturally in the derivation and will

by

therefore be used for these cases. The remaining computations for the general

solutions however will be carried out using h; iH as the second "fundamental”

parameter. For case I, X, 18 defined as hiz = .9 xH) = .9 h; actually other g
choices could equally well be made to define a typical offshore lewgth, e.g. g
h(x = (1-6)xx) = (1-6)h_. Then % is xH/hH and the parameter hg”xu is the g
ratio of the sctual initial slope to the slope of a straight line from the origin %
to (’ufhn)‘ This parazeter charscterizes the three families as well as did (%
32/n, 3

Case I requires 1 < h; iH < (tn 10)/9 (or more generally, (tn 1/8)/(1-8))
which is a curve whose initial slope hé is grester than hH/xH giving a curve
lying below the straight line from the origin to (.9 Xy .9 hH) for % < Xy
i.e. is concave upwards. Case 11 and case III require 0.5 < h; iH <1 and
0 < hé iH < 0.5 respectively; these both give topographies lying above (closer

to the surface) that the straight line to (xx,h"), i.e. are concave downwards.

SRS AR s s

Thus the three families can be represented by a continuous range of values .

220

of h; iH’ with some question as to the cross over values of 1.0 (which
corresponds tc the Stokes solution) and 0.5 (which presents no actual

difficulty). The main advantage to use of this parameter is that the frequency,

. s e A W T ol AR I QAT 0P St acs e - - e T
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0, the vertical "wavenumber," §, the (modified) offshore decay rate, I/;Hr i

and the topography, E(i!?x) can be represented as functions of k! fu‘ alone;

-

R ED RS TY

i.e. they are one parameter functions., The along shore vavenunber,»i; the N
wave height, £, and the velocities, i, V, W, depend oh both h; xg“ and
hé, i.e. are two parameter functions. Thus muchk of the solution can be expressed

quite simply in terms of a single parameter. ; ;
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! CASE 1:

This is in sany ways the most satisfying solution with a well behaved

topography. Consider h , h; and  x, * (1/.9)x(h = .9h ) to be specified.

:
™
3
3
g

&

g
i
i
¥
d

In non-dimsnsional texrms, i is given by h; and Xy since EH is 1 by definition:

* 9 h

tanh N .t [:inh 5]

n ' ¥
sinh9fi o™

with §, T and k given by

1

5 « (7 tanh 7)%/?

1 = [§ tanh ﬁ]/h;

o,

T R Lo

ko= B[+ (canhzn)!hézlllz

1f G2/R were specified instead of h; Ry & would be simply
Canhnl(azlﬁ). eliminating the need to solve a transcendental equation for n.

The topography is given by

B®) = 1 - (1/8)sinh S[sinh f + exp(-n2%/T))

and the velocities and wave height oy

i = exp(~1¥X)cos(ky - St)cosh{fi(14%)]/cosh &
7 = (k/1)exp(~IX)sin(ky ~ 3T)cosh(fi(l + Z)]/cosh n
% = -(R/1)exp(~iX)cos(k§ - 3t)sinh(H(L + Z)]/cosh &

E = exp(~-iX)sin(ky - 3t)

¢

T T LT I TS P e e s -
RSB EARI e B e e e S e M s ek B e

Note that, as n approaches zero, h; iﬁ approaches 1 while as fi approaches

S e s
AR

tnfinity, h; 58 zprreaches  (in 19)/.9. Furthermore, #i and I depend only on

2

1,

B SR et S e

the combination h’ X, while %, k, i and the velocities require separate

values for h! and Ry However, i/iH and E(i/in) depend only on h! .
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h! Ry = (1/.9) [2n 10 = ¢2((2n 10)/3 = 1/ )]

[11]
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A: Consider the limiting case 0%/f = ¢ << 1, Approximations for the govarning ﬁ

N parameters are found to be 3

Axe

: ]

: 7 wel/h b

| L wve /ho o

'3 3

}; z o <« € {‘

1 ; K well + (e/nh)?2H?

o
3

The restriction on §2/f implies o << o, » i.e. that a shallow water wave b/
theory be used leading to the same topography for all applicable frequencies, 3

The topography is given by

RGD) = 1 - expl-h) % 3
i which in turn is the same as that uscd by Ball (1967)., Within the limitations of ?
: this case, the velocity potential is %}

¢ = D exp[-x®x/hJcos(x(1 + (klh;2)1/29 - 5t} %
3 with x 2 8. This corresponds to Ball's solution for the case of zero rotation ’i
e i
and mode number (n) = 0, i.e. the first term in hie hypergeometric polynomial ;
k- which then reduces to a simple exponentisl decay in X. The corresponding R
§ velocity field has no vertical variation, an exponential decay with distance ”§
- perpendicular to the shore line and a periodic wave behavior aiong the shore 'g

line, both of which depand on the nondimensional frequency afid the initiil>

beach slope. Since this form has already besn obtwined by Ball, in ‘far gteater

P e e,

generality, it will not Ve digcussed furthur heza.- e e
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B: Consider next the case when d%/fi is near 1, f.e. 3%/ » l-g; £ << 1,

Then B = %Ln(Z/c) is a large number. The remaining parameters follow as

1/2

[+1]

= [%in(ﬂt:)]

[ ] ]

= (1/2 h;)zn(Zlc)

- (Ul 1 + /m A2

=1

s
;
3
E

and
b Ry e 1 - a1 = (e/2)")/ (.45 wm(2/e))

N A

¢ =
i.c. ho Xy is slightly larger than 1.

The topography 4is given by

. —1[ (h'g-l)fz]
RGE) 1 - (1/280(2/¢)) “sinh | (e/2) ©

For héi << 1, this reduces to a linear topography, h = h;i.

p™S AT oy e ey et
O e L BT USRNSSR

Since h; iH is close to 1, this implies that X <« iH for this linear

topography. For thesc small values of X, the velocities and wave height are ‘é
5
&
- Zo N / - K
i = 20 2E % Mooy (1/20n(2/ ) A+ U/ DY - (1/2m(27)) M2 ) 7
-y 3
5
v aw—h'(2/c)1/2(2-§/hé) cos { " " )| §
o 5
- -y t
o~ (2/¢) x/2h} sin [ " " -

This solution recovers the classical Stokes' solution, but only for large

A LR e PRI,

-

n and J. However, if the general solution is examined, the qgnglete‘Stqkes'
solution (for all ) is obtained for ¥2/K exactly equal to 1.0, This limiting
process for case I can only provide the high frequency Stokes' selution since ;ﬁe
regular Stokes' solution is actually neither in class I nor in class II but on
their toundary. Since 2 < 0, these velocities diz out rapidly with increasing

depth and distance offshore.




R AR RN e R g XN S e T SRR Rl S T R AR 3 R B R e A T e S T N T R

[ N

fhege KERL Y L SR MR T S S AR,
LT T e AL T NS EE

v . —— ‘
[13)
L 4
E i CASE II: 4
b 3 y a3
: i . This, together with case IIl, compose the solutions for h& !M <1, ﬁj
£ g i.e. the concave downward topopraphies; h is related to hc',‘iH through &
‘:«‘ N h' - coth a . Ln(cosh a) 3
kP o gH n &
& . P
Ee with b
iL :{’
. & 5
2 g = (% coth 5)1/2

ral

= (% coth E)/hé

: k= #{1 + (cothzﬁ)/h:’z]l/2

>

drwb'}?‘\”"‘gg "ﬁ: Yo

gi and %
3 R(S) = 1 = (1/R)cosh™ [cosh 7 + exp(-n28/1)) 4
5

The velocities are then given by

= exp(~I®)cos(ky - Gt)sinh[f(1l + Z)}/sinh n

[=]

ko ¢ = (k/1)exp(~ix)sin(ky - 5t)sinh{A(l + Z))/sinh n

v = ~(f/1)exp(~IX)cos(ky ~ gtycosh{n(l + z)]}/sinh n

and the wave height by

T = exp(-I8)sin(ky - 5t)

As n approaches zero, h;:'c'Nx approaches 1/2 while as @i approaches

R < T S e BB S e e

1
¥

2
Ao

infinity, h; i“ approaches 1 from below, Again, 3, E/in. ﬁ(i/i“) and n
depend only on the single parameter h; §H' '

Limiting values of §?%/fi may again be examined.

»

R
i
;%
s
%

A: Consider the limiting case T2/fi » 1 + ¢ where ¢ << 1. Here, §i =:1/22n(2/¢)

again and ho Xy & 1 YOI with

O s ‘ ok
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= [1/28n(2/¢) ]1/2

= (£n(2/€))/2h;
o (L/2h")2n(2/e) (1 + 132)

Qal

1/2

x4

o
t ;
N T I s

and, for Eh(') <1 (as it must be for X < i‘H)

«

R(X) =~ h) ¥ 3
with §
3o 0@ " M2 o512 e/ + WD - arz m(2/en™? ) 1%
T~ + h‘;z)llz(z/c)(i - ®hg)2 it " " | 3
SR R L ) ) .
£ . (20X Mo gin | ; " -

R AR SL Y TR AW

"

For small X, 3, the Stokes solution for large 3 is found again as would be

o
S

N s

expected, In fact, this solution is identical to I~B except for h(', ;‘H which is

N

greater than 1 for I~B and less than 1 here for non-zero €.
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B: Next consider the limiting case §2/fi = l/c where ¢ << 1, Here, n 18

approximately ¢ + (1/3)e3d, h; iﬁ 1/2 + ¢2/12 and

6:2.-1'*‘&'2/6
7 (l/h;)(l + ¢2/3)
k  [e?2 + (1/h;)2]1/2(1-+c2/3)

and

3
b,
g
I
i
A
&
4
‘:.
r
‘4
ey
.%
R
R
X
E
%
P
“
5
)%3
”

2

h(R) 1~ Q1 - 2h! 2)1/2

which for small hy X 1s linear again with slope h;. The velocity field and
wave height are given by

-

d =+ E)pr(-iih;)cos{y.(cz + (\./hs)z)l/z - T

1/2

<i

= (1 + (e h;)zl (1 + Z)exp(-%/h’)sin] ")

Q

- h;oexp(-i/h;)COSI "o
£ cxp(-i/h;)sin[ " ]

Note that, to the lowest order in ¢, h; RH’ 5 and 1 are essentially

S SR N a0 R e R i

independent of ¢, as are k, u, v and w {if hy << 1 as well,

AR

The topography is parabolic, with a maximum horizontal extent of 1/2 h; as

0

2
e

expected. The horizontal velocities decrease linearly with depth, but do not

R RTY P,

vanish at the bottom until h equals ﬁq, i.e, Z can reach -1.

wadesisy

The vertical velocity is constant with depth and is 0(hé) compared to the
horizontal velocities; this {s then a small value unless ;H 18 itself o6f

order 0(1), i.e. the initial slope is 45° or greater which is physically

L (Vg VD

BN

unlikely.
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CASE III: (k% < %2)
Here the range of h", in is from 0, as @ approaches =n/2 to 1/2, as . ;4

m 'npproaches zero with the general relation

_ cot @+in(cos @) u

-
] hO xM :f',
%
with
5= (& cot @2
£ = (m cot m)/h(z :
- - o 2 2 :
g
°
and :
= o _ sin llein Yeexp(Hi2%/E)] - v !
h(x) - ﬁ 'E
|
with if
Y = -% +%/2 and |
U = exp(-£x)+cos(ky - ot)esin(R(l + 7)]/sin @
¥ = (k/f)exp(~2X)sin(ky - Gt)sin(®(L + Z)]/sin @
% = -(&/L)exp(~Ix)cos(k§ - Gt)cos[m(l + Z)}/sin m
g = exp(~ix)sin(ky - ot)
A: The first limiting case here is G2/8 = ¢ << 1. Then y= ¢ and
- .. - ' . _2ecfince¢
B = n/2 ~ ¢ with h) Ry = ===
g & (n 5/2)1/2

2 ]
i oe /2 ho

k% (/2) [(e/h)? - 114/2

P P T T [P, « -
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and

RR) » 2/n(sin L(exp[- n(%, = ©h/2e]) - ¢

Clearly ¢ > hé in order to have real 'k, i.e. a progreasive wave solution.
If X 1is small enough such that exp(nihé/Ze) 1+ n!hélzc the linear topography

solution is ‘ound again, i.e.
*

~ 3.t
h = ho X

The velocities and wave height are

T 2 exp(-en®/2h!)+con(Fon/2+((c/n))? = D? - (ne/)M? Elatnta/2qt + D)
¥ 2 (1 - (h/0)2)M 2eexp(-cok/2h!)stn " Jain[r/2(1 + 2))
w .- -(h;/c)exp(-cn§/2h;)cos[ " Jeos[n/2(1 + %)]
€ = exp(-cu®/2h})sin| " ]

Such a solution requires extremely small values of the initial slope, hé.

This in turn leads to a rapid decay of wave heights and velocities in the offshore
direction due to the exp[-cni/Zh;], e.g. for ¢ equal to hé (such that k {is
zero corresponding to no alongshore variation), the velocities have decayed to 42
of thier shoreline values when x has reached 2 hM' The wave periods are very

long, which could cause Coriolis effects to become significant and thus

invalidate this solution.

B: The final limiting case, 0%/E = l/¢, € << 1 impliés vy 5 ®/2-¢, @ % ¢ and

h! %= 1/2with §=1, %= @/n), k= (1’(5"3)2)1/2/"3 and

hx) = 1= (1 - ?ﬁhé)llz which reduces to the linear form when X h; is small.

The velocities and wave height in this case are

A

e e A e
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T = (1 + Dexp(-R/h))cos(§( = (shIDHE/m! - ]
¥ = (1= (ch)DYEA + Pexp(R/mDyatnl "

Si o= mhte - ] "
W= -h! exp( i/ho)cos[ ]

[
* . . - » .
o T 2 A N A A T e CC e AN

22

i =~ axp(~x/ h‘;) sin( " )

which match the limiting case II~B as they mugt since both of these correspond

T

A B

to the case h; RM = 1/2 w?ich is common to both case IT and case III.

Apart from the alongshore velocity, ¥, and the corresponding alongshore dependence

z, '-.‘ﬁ‘.:‘i e

'
Ly

on k¥, this solution is independent of ¢, Furthermore, as ¢ passes through .

b

zero, the match between case II-E and case III-B is complete, i.e. the transition

from case II to case III is smooth.
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DISCUSSION OF GENERAL SOLUTION

Although the problem is completely specified by three dimensiona),
(e.g h;, Xy and hH) or two nondimensional (e.g. hé and iu), it is of
practical interest to express results in terms of as few parameters as
possible. This may be done for a portion of the present problem.
The quantities X, d, E/SEH are functions only of the single parameter
(h; ix) and the topography h 1is a function of the parameter h; iM and
the spatial variable i/iH. Thus although the computer program, given as
appendix A, uses three dimensional inputs, h;, hH and Xy the tesult; may
be stated in a fairly compact form.

The vertical "wavenumber,"” &, is related to the single parameter
h; iM by h; i” = F(n) where F(5i) has different forms for the three Eanes
considered and is plotted in Figure (1), Thus n may be read from this
figure for any value of h’ %, between 0 and (2n 10)/0.9
(or calculated through the program). Figure (2) provides the (nondimensional)
period, T, as a function of the single parameter, hé !H. Since the
nondimensionalization involves hM’ dimensional periods require knowledge of
both h, and h; iH. At h; iH equal to 1, there is an anomaly in the
original solution. At this value, equation (7) reduces to db/dx equal to
a constant (-n/t) and h; EM is 1 for all values of h;. In a sense, this
iz a “fourth"” solution family, the well known Stokes solution, in that it
can not be obtained from the other solutions, except as a high frequency
limit, Thus Figure (2) has zero period at hé iH equal to 1 with the
Stokes solution indicated as a dashed line, The Stokes soiuéionr
h=+ tan a *» x, requires 62 = gk sin a. Thus for any h; = tan a,vthere
is a single specific frequency, o, at least for the lowest separable mode,

Ursell's extension {1952) to higher modes is not comparable here since
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those nigher modes were not separable solutions and could not be obtained
by this present approach.

A question then arises as to the appropriate solution for an “élmost"
linear topography. The examples here, which repreaent the only separable
solutions--but clearly not necessarily the only solutions--will only
support very high frequency trapped waves when h; RH is near to 1 but not
equai to 1. _

The offshore decay parameter, %, depends on both h; iM and. iM
but in a manner such that Ti/iM is a function of h; %, only. This is
shown in Figure (3) where E/iH is given for hM = 200 meters and

Xy = 200 kilometers for various values of h; but valid of course for any

choices of hy and Xy This figure indicates the limited range of

practical sclutions since all terms decay like exp(~i%) or equivalently

s

e e S A e s KA
LA A SRR H XA

ex?(*(i/in)(ilix)ixz). To have this exponential greater than 0.04

"
2EA

S

compared to a value of 1 at ¥ = 0, (E/in) < n/(i/in)(in?z. Even for

i/in up to 0.1 raepresenting the reginn of measurable wave heights,.
/%y < 31.4/%,2. Realistic choices for %y are of the order of 40 to
1000 for the continental slope and shelf respectively; these limit

5

E/iH <2x 1072 and 3 x 10™° which in tura imply that h; %, Bust be close

to either zero or (&n 10)/0.9 in either case. Thus for realistic ocean

1/ ;£ \‘/ PP
s S RerdbA S A gy S A

topographic scales, the enerpy oust be trapped very near shore.
Figure (4) shows the topography, h, as a function of R/i"A‘fqg
several values of the parameter h;,iH, based on a choice of hy, equal

to 200 meters and Xy equal to 200 kilometexs but again, valid. in. general.

g

g
CIRENES SN SR a5 TR T a

LR~

Those topographies for h: X, > 1 are forced to pass. through (0.9, 0,9) by

the choice of definition for X3 other choices wculd simply rescale these

€

curves to pass through (1-§, 1-8), i.e. appear steeper for & < O.l.or

5

o,

shallower for § > 0.1. As h; iH approaches 1,0, the topography. appears-
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almost linear except near iliﬂ equal to 1. For values of hé iu less

than 1, convex upward topographies are found with an infinite vertical

slope at 5E/5EH equal to 1.0, The transition across h; iy equal to 0.5

is smooth with no ascertainable peculiarities.

Calculations of velocities and waveheights produced extremely small

values for any offshore distance that itself was not a very small fraction f;
. i

of x,. For example, with h; = 0.002556, hy = 200 meters, ® %
Xy ® 200 kilometers the velocity and waveheight values had reached 4% of ;g
: : %

their maximum values when x reached 0.2% of Xyr €8s about 400 meters-- i%
4

A,

at which distance the water depth was approximately one meter. This implies

v&"“’é':'

that the edge wave was completely trapped in the region where the model is
1,& A
the poorest representation of the overall topography and is therefore

4

s

inadequate. For this reason, no results are shown for this case.

S ’

ST s N s
e fovtedis it i el

For much smaller values of iH however, it is possible t6
illustrate the depth dependence for velocities. Figures (5) and (6)° show
results for iH = 1.0. The first plots the offshore velocity, U, as a
function of (a/iﬂ) and Z for h; » 1,01. The second illustrates the

different coastline values for ¥V and W a5 compared te the reference

value of 1 for u, as a function of h; iq. There is a cutoff at E

- - b

hé = 0.2854 for Ry ™ 1.0 below which k becomes imaginary. This corre- %

. 4. EC s :}‘

spords to the requirement that @ > fn(sec #). Similarly near 3

. ’ ' 2

h! %, = (%2 10)/0.9, ¥ behaves like (1 + <h;/c>2)1’ 2 as defined in case I-A, . 5

while & behaves like -hs. . “ ‘%
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CONCLUS1ON

The bulk of observations have been for shallow water-long wavelength
situations such that the question of vertical variation does not enter, as
befits the general emphasis on two dimensional theory for edge waves.

All tsunami observations are of this form as were the observations of Huntley
and Bowen (1973) who found evidence for the lowest mode edge wave of Ball's
(1967) solution corresponding to case I-A here. Ursell (1952) described
experiments on a linear topography but did not give any details of vertical 44
structure. Thus it appears that separate observations and/or experiments
may be necessary to detect the three dimensionality of those edge waves
described here. Whether such observations are warranted is another question.
Wavelengths that are significant enough to carry appreciable energy
alongshore may also need to be long enough to allow a two dimensional theory
to apply. Such a theory allows for far mcre general topographies than does
the three dimensional theory, as discussed in appendix B. This is cleerly

a question for further consideration on physical grounds.

Assumipg this research to be physically justiiied, there are still
several wathematical questions left unanswered, First, are there
non-separable solutions, analogous to Ursell's (1952) solutione, for these
or related topographies and if so how may they be found? Second, what is

the appropriate three dinensional edge wave solution for an "aimost" linear

topography? Is it close to the original Stokes solution or mgst it be
close to the high frequency limit given here? ,

One extension of this work would.be towards alongshore variations in
topography. T£ the topography varied periodically along the césstline

(i.e. in y) the edge waves would be filtered as Floquet waves, : .

TV

e.g. Briliouin (1953), and only certain frequencies and wavelengths could
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propagate. Alternatively, the effect of a small irregularity in the
otherwise straight coastline could be studied, e.g. as by Fuller and Mysak

(1977).

~

The extension to lower frequencies such that Coriolis effects-hecome
significant does not appear to be appropriate in context of a thfggd"
dimensional thecry sigce these lower frequencies would imply shallow water-
long wave theory to be a go;d approximation in the real ocean. Thiz.then
brings up the question of the aﬁplicability of two dimensional theories to
the present examples. Case I-A is essentially shsllow water theory -but-

Zhe remaining asymptotic solucion; do have some depth variation as dves the
general solution. Thus two dimensional theories give quite different
results than those given here as seen in appendix B. Even case 1II-A,

; which is a low frequency solution, requires very small b; such-that‘éig?o

§ dimensional splution may apply for X << iM eventually (for X near ik)
: ’ . )

vertical variation is required.

However over the regions of interest, i.2. where the waves have not

e man et n

decayed to negligible values, even the asymptotic solutions do not

\ exhibit appreciable vertical variations for rralistic values ofv‘h; m;?d
; iu since Z ncver got appraciably different from 1 (the free'quif;éé)u
There are clearly values for the input parar.ters where thesé vertical

variations may be significant, but they do rot appear ‘o be physically

. . \
realistic, e.g. ix < 1.
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APPENDIX A

3

» éé

The following computer program accepts 2 single card 1JOB as the g

3

nuaber of jobs (input data sets) and then several "Jobs" each with h;. hH %
and Xy (in cm) as input. The card IVEL = 0 behind IVEL = 1 will surpass %
js

velocity output while the reverse will provide velocities at %
X%y = 0.0 (0.1) 1.0 and %/h = 0.0 (0.2) 1.0. The remaining output is labeled;
¢

the symbol D in front of a variable means the dimensional form (in cgs units). %
The symbol HPX is h; ¥y HOP is h;. SIGMAO is o,, etc.. Typical running times j%
for twenty different input cards is about 2.5 seconds on a CDC CYBER 173, %
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APPENDIX B: TWO DIMENSIONAL (SHALLOW WATER) EDOE WAVES

Consider the conditions under which a long wavelength free surface
gravity wave may be trapped against a straight coastline by a topography
which varies in a direction normal to the coastline. Taking x in this
normal direction and y along the coastline, the linearized shallow
water-long wavelength equations for a homogeneous fluid on a rotating
earth are [e.g. LeBlund and Mysak (1978)]:

3u/3t + g Infax = fv
(1) av/3t + g 3n/dy = -fu

In/dt + H(3u/ax + 3v/3y) + udH/3x = 0
where (u,v) are velocities, n 1s the free surface elevation, H {is the
water depth and f 4s the Coriolis parameter.

Assume solutions which propagate along the coastline, e.g.

u(x,y,t) = U(x) cos (ky - ot)
v{x,y,t) = V(x) sin (ky - ot)

n{x,y,t) = E(x) sin (ky - ot)
The original equations then reduce to
gE' + oU - fV =0

(2) -oV+gkE+ fU =0

-~gE + H(U' + kV) + uK' = 0
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Clearly U and V may be eliminated, leaving a single a2quation on
E, e.g. LeBlond and Mysak (1978 - p. 220)

2.¢2
(3) (HE")' + {" gf - k24 - f“ }z -0

This equation doves not force a particular x dependence on either E ov
H, as was the case for the three dimensional equations, since here E nud
B are coupled while previously they were uncoupled. Innteld thege are
many solutions. If for example, E is required to be exponentially
decaying such as Eoexp (-2x) , equation (3) requires H(x) to

be
_22
H(x) = _%EZEEZT +H exp (.{xﬁ£k?o ]x]

where Ho is an arbitrary constant dafined in general either by choosing
H(0) = 0 or U(0) = 0 to have no net mass flux across the.coastline,
x = 0, If H(0) 4is chosen to be zero, the topography is given by

2 2,921 )
w0 = 5 - o {EH)

Certain ranges of parameters give negative topographies which iult be
excluded. Requiring that £ > O, but recognizing thit k may be either
positive or negative yields the following results: : ‘ ,

For ¢>f, k> gives a positive concavé upwards topography;
exponentially approaching a uniform depth, H_ equal to . 2-£2)/g(k2-£?) ;.

-L <k < gives a positive, convex upwards, exponentially increasing
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{31

depth, -g2/f < k < =2 gives a positive, concave upwards
topography again exponentially asymptotic to H, and finally k < -02/f
yields a negative topography.

For o<f, k>2 and -gf/f < k < £ both yield
negative topographies, but -1 < k < ~0)/f yields a positive,
concave Jpwards topography again decaying exponentially to the asymptotic
depth H_ while k < ~-% yields a positive, convex upwards
exponentially increasing depth.

The choice of U(0) equal to zero requires either ¢ = -fk/2 s
leading to a constant depth, H = £2/g2 , or the trivial solution,
E(0) equal to ¥ero and thus E(#) equal to zero everywhere., This choice is
then rejected for this particular form for E(x). \

In general, equation (3) may be considexed to define E. féf\aAgiven
H or alternatively H for a given -E. Hiile the first view is more

realistic physically, the second is simpler wathematically, i.e.

242
{gr -—f-‘in}n' +{s" - kzﬁ} H = {-—-—-——f : } B
O 8

sy
may be solved completely for H(x) for a given E. ‘
” ‘n L2 br
H(x) = c, exp|- [ E''(x) ?kE(x) dx
' - —
i £'(x) 5 E(x) J
o+ {fznoz] exp: f E' "(X)-::B(x) dx‘
8 E'(x)- -a—- E{x)
. I s E() . expl+ I B 0)-K2E) 14
E'(x)- §E~E(x) E'(x)- 55 E(x) . .
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where C0 is an arbitrary constant to be chosen to have zero net mass
flux across x = 0.

Although this format may seem inappropriate on physical gr&hnds, it
repregsents a "transformation" of E(x) into H{(x), i.e. trial functions
for E lead directly to a functional form for H and in a sens¢ to the two
dimensional counterpart to the three dimensional case studied in the main
text, The alternative view of specifying H and solving for E leads to
a second order differential equation on E with variable coefficieﬁt§ some
of which vanish when H 18 zero, i.e. represent singular solution points,
A number of solutions in this format have been generated, e.g. Ball (1967)
obtained a solution in terms of hypergeometric polynomials for an
exponential depth variation of the form Ro(l-exp(-ax)). Hidaka (1976-~b)
obtained a solution in terms of modified Mathieu functions for a parabolic
depth variation of the form Ho(l + (leaz))llz, Robinson (1964) used a
finite width, linear shelf terminating at a discontinuity to a constant
depth ocean with solutions in terms of Laguerre functions, Eckart (1951),
Myaak (1965) have obtained solutione in terms of Xummer functions or Laguerre
polynomials for a linear topography, H(x) = yx, and Shaw-(l977) has obtained
solutions in terms of (both) Kummer functions for the case of a linear
topography which did not necessarily break the surface, H(x) = H; + vx.
Other solutions could be generated for other topographies using.the standard
functions of mathematical physics, e.g. Bateman (1954).

In a sense, however, these solutions are all the same type;
series solutions, using the method of Probenius, to the original differential
equations with the singular solutiom (if any) at ;hgtpgigin,sutprelled, if

necessary.,
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